Nuclear Energy

Write your name and student number. This exam comprises 4 problems. The total number of points is 36. The final grade is obtained by dividing the number of points by 3,6.

Problem 1 (10 pts)

A reactor has the shape of a parallelepiped with a square base of side 5.2 m and a height of 6.8 m. The reactor is filled uniformly with a fuel with the properties

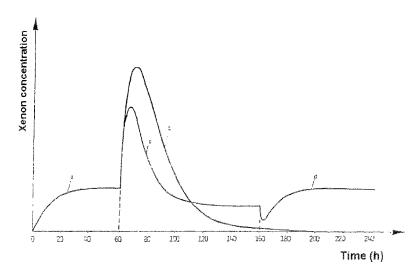
 $\nu \Sigma_f = 0.0072 \ cm^{-1}$, $\nu = 2.45 \ and \Sigma_a = 0.0070 \ cm^{-1}$.

The reactor operates steadily at a fission power of 15 MW. The average energy released by fission is $E_f = 200 \text{ MeV}$.

- a. Calculate the value of the diffusion coefficient D. (2 pts)
- b. What are the average and maximum values of the neutron flux? (4 pts)
- c. At what rate is the fuel consumed in the entire reactor (in nuclides/s) and at the centre of the reactor (in nuclides/cm³.s)? (4 pts)

Problem 2 (6 pts)

In a nuclear accident, a reactor output increases suddenly in about $\Delta t = 4 s$ from $P_1 = 0.20P_0$ to $P_2 = 100P_0$ with P_0 the nominal power of the reactor. As a result of the accident, I-131 (half-life 8.02 days) is released in the environment.


- $\not A$ Assuming a constant reactivity excess during this time, calculate the average reactor period τ . (2 pts)
- K. Calculate the time needed for the activity of I-131 to reduce by a factor 256 (expected to be a safe level). (4 pts)

Problem 3: Xenon concentration (12 pts)

The figure below shows the response of xenon-135 concentration as a function of time to changes in the power level of a reactor. The reactor is started at t = 0. At t = 60 h, the power is decreased and then restored to its original value at t = 160 h. Assume that lodine is produced only by fissions, that its microscopic absorption cross section is negligible and that Xenon is produced by fissions and the decay of lodine.

- a. Give the expression of the xenon concentration corresponding to t = 50 h in curve a. (4 pts)
- b. Explain the reason of the rise in concentration in curve c. (4 pts)
- c. Curve d shows a dip between t = 160 h and $t \sim 190 h$. Explain how this dip in concentration occurs. (4 pts)

AUCH

Problem 4 (8 pts)

Consider a Pressurized Water Reactor.

- a. What is the state of criticality of the reactor at the start and at shutdown? (2 pts)
- b. Explain why it is necessary to use enriched fuel in such a reactor? (4 pts)
- c. What is the purpose of the pressurizer? (2 pts)

,

Nuclear Energy

Radioactive decay law:

$$N = N_0 e^{-\lambda t}$$

Geometric buckling $B^2(cm^{-2})$:

$$B^2 = \frac{1}{D} \left(\frac{\nu}{k} \Sigma_f - \Sigma_a \right)$$

Total average power of a reactor:

$$P[W] = E_f \times R_f \times V$$

 $1 MeV = 1.602 \ 10^{-13} J$ and 1 W = 1 J/s

Reactor period

$$P(t) = P_0 \exp[t/\tau]$$
$$\tau = \frac{\ell}{\rho} + \frac{\beta_{\text{eff}} - \rho}{\lambda_{\text{eff}} \cdot \rho + \dot{\rho}}$$

Buckling and neutron flux for different reactor geometries

Geometry	Dimensions	Buckling B ²	Flux	Α
Infinite slab	Thickness a	$\left(\frac{\pi}{a}\right)^2$	$A\cos\left(\frac{\pi}{a}x\right)$	1.57 ×
	3			$\times \overline{a E_f \Sigma_f}$
Rectangular parallepiped	axbxc	$\left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2 + \left(\frac{\pi}{c}\right)^2$	$A\cos\left(\frac{\pi}{a}x\right)\cos\left(\frac{\pi}{b}y\right)\cos\left(\frac{\pi}{c}z\right)$	$3.87 \times \frac{P}{V E_f \Sigma_f}$
Infinite	Radius R	D 405 2	(2.405 m)	
cylinder	Radius R	$\left(\frac{2.405}{R}\right)^2$	$AJ_0\left(\frac{2.405\ r}{R}\right)$	$0.738 \\ \times \frac{P}{R^2 E_f \Sigma_f}$
Finite cylinder	Radius R, height H	$\left(\frac{2.405}{R}\right)^2 + \left(\frac{\pi}{H}\right)^2$	$AJ_0\left(\frac{2.405\ r}{R}\right)\cos\left(\frac{\pi\ z}{H}\right)$	$3.63 \\ \times \frac{P}{V E_f \Sigma_f}$
Sphere	Radius R	$\left(\frac{\pi}{R}\right)^2$	$A \frac{1}{r} \sin\left(\frac{\pi r}{R}\right)$	$\frac{P}{4R^2 E_f \Sigma_f}$

Neutron poisons concentrations in reactors

$$\frac{dN_I}{dt} = \gamma_I \Sigma_f^{Fuel} \phi - \lambda_I N_I - \sigma_a^I N_I \phi$$
$$\frac{dN_{Xe}}{dt} = \gamma_{Xe} \Sigma_f^{Fuel} \phi + \lambda_I N_I - \lambda_{Xe} N_{Xe} - \sigma_a^{Xe} N_{Xe} \phi$$